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Light cone effect on 21-cm signal from EoR and Cosmic Dawn

Cosmic DawnEpoch of Reionization (EoR)

• 3D imaging of universe with 21-cm observations 
!

• The mean and  statistical properties of HI 21-cm signal change with redshift. 
!

• This effect, known as the ‘light-cone’ (LC) effect. 
!

• LC effect has a significant impact on 3D power spectrum etc.

1.5 Main challenges of the 21-cm observations
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Figure 1.3: Di�erential brightness temperature slice along the frequency or red-
shift axis. This slice is generated from a simulation with box 200 cMpc/h for source
model mini-QSO.

temperatures of the signal and the CMBR. Figure 1.3 shows the evolution of the
brightness temperature maps along the frequency direction for a model of EoR
developed later in the thesis. This light-cone slice is taken from a simulation
with 200 cMpc/h box where the ionization is driven by stars within galaxies and
the heating is driven by mini-quasar type sources. Just before cosmic dawn, the
”Tb is zero due to the dominance of the radiative coupling over the collisional
coupling. When the first sources formed in the Universe, ”Tb deviates from zero
due to strong Ly– coupling. Studies like Furlanetto et al. (2004a); Mesinger et al.
(2014); Pritchard and Loeb (2012) show that the global averaged < ”Tb > re-
mains negative during the cosmic dawn and the first phase of reionization, as these
sources are not able to heat up the IGM above the CMBR temperature. Eventu-
ally, the IGM gets heated above T“, which transforms the negative < ”Tb > into
a positive value. Around redshift 6, when the Universe got su�ciently ionized,
< ”Tb > vanishes again as the residual neutral hydrogen (in galaxies and very
high-density regions) is negligible.

1.5 Main challenges of the 21-cm observations

While the redshifted 21-cm signal carries enormous information about the EoR,
the signal itself is very di�cult to deal with. As the signal is generated by the
hyperfine transition of the neutral hydrogen atom, the strength is very weak
compared to the other components like the astrophysical foregrounds, system
noise, radio frequency interference (RFI) (Ghosh et al. 2015, 2012; Patil et al.
2014a). Thus, it is a challenging task to detect the cosmological 21-cm signal at
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Light cone effect on 21-cm signal: An example

4



Two important issues

•How to simulate Light Cone 21-cm signal? 
!
!
!
•How to quantify the Light Cone signal ?
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Generating the coeval cubes

• Used semi-numerical simulations (Choudhury et al (2009), Majumdar et 
al(2012), Mondal et al (2016) !

• Box size L = 300.16 Mpc!
• 4288^3 particles, grids of spacing 0.07Mpc!
• Mass resolution of ~10^8 M⊙!
• Identify collapsed halos using FoF!
• generated the coeval cubes in the range rn = 9001.45 Mpc (nearest) to rf = 

9301.61 Mpc (farthest) (7.51<z<8.53). !
• The change in the mass-averaged HI fraction ¯xHi  is ¯xHi ≈ 0.65 − 0.35 = 0.30!
• 25 different coeval simulations.!
• The LC box is centred at redshift 8 !
• co-moving distance rc = 9151.53 Mpc, frequency νc = 157.78 MHz and ¯xHi ≈ 0.51.
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issues such as quantifying the LC induced anisotropies in
the power spectrum and determining the optimal bandwidth
for analyzing the observed signal in order to avoid com-
plexities arising from the LC effect (La Plante et al. 2014;
Datta et al. 2014). In a recent work Ghara et al. 2015 have
considered the H i 21-cm signal from the cosmic dawn which
includes fluctuations in the spin temperature. They find that
the LC effect has a dramatic signature on the cosmic dawn
H i power spectrum.

The redshift space distortion due to peculiar velocities
is an important effect that modifies the redshifted 21-cm
signal (Bharadwaj & Ali 2004) along the line of sight (LoS).
While there has been considerable work on including this
effect in simulations of the EoR 21-cm signal (Mao et al.
2012; Majumdar et al. 2013; Jensen et al. 2013), the issue
of how to properly include the LC effect in the presence of
peculiar velocities has not been addressed earlier.

The issue of how to analyze the statistics of the EoR
21-cm signal in the presence of the LC effect is also impor-
tant. Note that the signal in the different Fourier modes is
uncorrelated only for a statistically homogeneous or ergodic
signal, and in this case the second order statistics is com-
pletely quantified by the 3D power spectrum P (k). However,
the LC effect breaks statistical homogeneity and makes the
signal non-ergodic along the LoS. In this case the signal in
the different Fourier modes along the LoS is correlated. This
implies that P (k) does not retain the entire information of
the 21-cm signal. Trott (2016) has argued that the spheri-
cally averaged H i 21-cm power spectrum gives a biased es-
timate of the EoR 21-cm signal and has proposed the use
of the wavelet transform to obtain an improved estimate in
comparison to the standard Fourier transform.

In this work we address two issues. First, how to prop-
erly incorporate the LC effect in simulations of the EoR 21-
cm signal in the presence of peculiar velocities. Second, how
to properly quantify the statistical properties of the EoR
21-cm signal. To this end we consider the multi-frequency
angular power spectrum (MAPS, Datta et al. 2007) which
doesn’t assume the signal to be ergodic along the LoS and
retains the full information of the 21-cm signal.

Throughout this paper, we have used the Planck+WP
best fit values of cosmological parameters Ωm0 = 0.3183,
ΩΛ0 = 0.6817, Ωb0h

2 = 0.022032, h = 0.6704, σ8 = 0.8347,
and ns = 0.9619 (Planck Collaboration et al. 2014).

2 SIMULATING THE LIGHT-CONE EFFECT

The redshifted EoR H i 21-cm signal is the quantity of in-
terest here. The Hydrogen distribution evolves dramatically
across the EoR. Starting from the early stages of EoR when
the mean mass weighted Hydrogen neutral fraction x̄H i is
close to 1, the Hydrogen distribution evolves rapidly to a
situation where it is nearly completely ionized with x̄H i ∼ 0
at the end of reionization. The issue here is ‘How to incor-
porate the light-cone (LC) effect in simulations of the EoR
21-cm signal?’.

The light-cone (LC) effect refers to the fact that our
view of the Universe is restricted to the backward light cone
which imposes the relation

r = c(η0 − η) , (1)

ηi−1 ηi

Coeval

ri−1 ri ri ri+1

Light-cone

ηi−1 ηi

ri−1 ri ri+1

Figure 1. This schematically shows how we sliced the coeval
simulations and stitched the slices to form the LC simulation.
The top panels represent our coeval simulations (at ηi−1 and ηi
respectively) and the bottom panel represents the LC simulation.
Note that the spherical coordinate system has origin at a distant
observer located on the left.

between the comoving distance r as measured from our po-
sition and the conformal time η, the suffix ‘0’ here refers
to the present epoch. We consider a simulation that span
the comoving distance range rn (nearest) to rf (farthest).
The LC effect implies that our view at rf is restricted to an
early epoch ηf (eq. 1) when the universe is largely neutral
whereas at rn it is restricted to a later epoch ηn when the
universe is nearly completely reionized. At each distance in
the range rn ! r ! rf , we view a different stage of the cosmo-
logical evolution ηf ! η ! ηn and consequently x̄H i evolves
along the radial direction of the simulation volume. It is
particularly important to account for this evolution when
simulating the EoR 21-cm signal.

For our purpose we have simulated snapshots of the
H i distribution (so called coeval cubes) at several epochs ηi
that span the relevant range ηf ! ηi ! ηn at non-uniform
intervals ∆ηi which were chosen so that x̄H i varies by ap-
proximately an equal amount in each interval. The H i distri-
bution in our simulations is represented by particles whose
H i masses vary with position depending on the local Hydro-
gen neutral fraction. Each snapshot provides the positions,
peculiar velocities and H i masses of these particles. Each
epoch ηi corresponds to a different radial distance ri in the
simulation volume (eq. 1). To construct the LC simulation
we have sliced the simulation volume at these ri, and for each
slice we have filled the region ri to ri+1 with the H i particles
from the corresponding region in the snapshot at the epoch
ηi (Fig. 1).

Observations will yield brightness temperature fluctu-
ations δTb(n̂, ν) which are measured as a function of the
observing frequency ν and direction n̂, here n̂ is the unit
vector in the direction of observation. For the 21-cm sig-
nal originating from the point n̂ r, the cosmological expan-
sion and the radial component of the H i peculiar velocity
n̂ ·v(n̂r, η) together determine the frequency ν at which the

MNRAS 000, 1–7 (2016)

• We consider a simulation that span the comoving distance range rn (nearest) 
to rf (farthest).

• The HI distribution is represented by particles !
!

• HI masses vary with position !
!

• For each slice we have filled the region ri to ri+1 with the HI particles from the 
corresponding region in the coeval box

Simulating Light Cone 21-cm signal -A particle based method

rn rf
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Figure 3. This shows the m-th particle within i-th LC slice at
rm in the flat-sky approximation.

2.2 Flat-sky approximation

The observed sky is spherical and the slices simulated at
fixed values of ri are, in general, curved as shown in Fig. 1.
However, the angular extent θmax = L/(2rf) of our simu-
lation box is ≈ 1◦ for which it is adequate to adopt the
flat-sky approximation whereby the simulation slices are flat
as shown in Fig. 3. We use a Cartesian coordinate system
with the origin located at the distant observer, the z axis is
aligned along the LoS through the centre of the box, and the
x and y axes are in the plane of the sky – perpendicular to
the z-axis. Under the flat-sky approximation, the unit vec-
tor n̂ along any arbitrary direction can be decomposed as
n̂ = k̂ + θ where k̂ is the unit vector along the z-axis and θ

is a 2D vector in the plane of the sky. The curvature of the
sky introduces terms of order θ2 and higher which we have
ignored here in the flat-sky approximation. We have, how-
ever, retained terms of order θ ensuring that the resulting
errors are of order < 1%. In particular we use the approxi-
mations r =

p

z2 + x2 + y2 ≈ z, θ ≈ [(x/z)î + (y/z)ĵ] and
n̂m · vm ≈ [vz]m + (x/z) [vx]m + (y/z) [vy]m.

We use eq. (3) to map the positions of the H i particles
to frequency space. The final LC simulation extends from νf

to νn in frequency, and we note that the inclusion of peculiar
velocities causes some of the particles to have frequency val-
ues beyond the box boundaries. This causes a depletion in
the particle density near the box boundaries. We have esti-
mated the frequency interval that is affected by this particle
depletion, and we have excluded slices of this size from both
the nearest and farthest sides of the LC box. Finally, we have
interpolated the H i distribution from the particles to a 3D
rectangular grid in (θ, ν). The bottom panel of Fig. 4 shows
a section through the simulated 3D LC 21-cm brightness
temperature map. The smaller frequencies on the right side
of the LC simulation correspond to the earlier stages of the
evolution as compared to the larger frequencies shown on
the left side. For comparison, the top panel of Fig. 4 shows
the same section through a coeval simulation at the central
redshift 8. The different frequencies in the coeval simula-
tion all correspond to the same stage of the evolution. We
see that it is possible to identify the same ionized regions in
both the LC and coeval simulations. We see that at the right
side (early stage) the ionized regions appear smaller in the
LC simulation as compared to the coeval case, whereas the
ionized regions appear larger in the LC simulation at the left
side (later stage). The fact that each frequency corresponds
to a different stage of the evolution is clearly evident if we
compare the two panels of Fig. 4. We note that the bright-
ness temperature fluctuations δTb(θ, ν) = Tb(θ, ν) − T̄b(ν)

Figure 4. This shows Tb(θ, ν) on a section through the 3D 21-
cm brightness temperature maps for the LC (bottom) and coeval
(top) simulations. The right vertical axis and the overlaid grid
shows the corresponding comoving coordinates calculated using
eq. (9).

in the coeval simulations are, by construction, statistically
homogeneous along the LoS direction ν. The cosmological
evolution seen in the LC simulation, however, breaks the
statistical homogeneity along the LoS direction ν. The fluc-
tuations δTb(θ, ν) continue to be statistically homogeneous
along θ in both the coeval and LC simulations.

3 STATISTICAL ANALYSIS

The issue here is “How to quantify the statistics of
δTb(θ, ν)?”. We consider two statistical quantities namely
the spherically averaged three dimensional (3D) power spec-
trum and the multi-frequency angular power spectrum
(MAPS) which are discussed in the two subsequent sub-
sections.

3.1 The power spectrum

Several authors (see Section 1) have used the 3D power spec-
trum P (k) to quantify the simulated EoR 21-cm signal in the
presence of the LC effect. The first step here is to map the
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Figure 4. This shows Tb(θ, ν) on a section through the 3D 21-
cm brightness temperature maps for the LC (bottom) and coeval
(top) simulations. The right vertical axis and the overlaid grid
shows the corresponding comoving coordinates calculated using
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in the coeval simulations are, by construction, statistically
homogeneous along the LoS direction ν. The cosmological
evolution seen in the LC simulation, however, breaks the
statistical homogeneity along the LoS direction ν. The fluc-
tuations δTb(θ, ν) continue to be statistically homogeneous
along θ in both the coeval and LC simulations.

3 STATISTICAL ANALYSIS

The issue here is “How to quantify the statistics of
δTb(θ, ν)?”. We consider two statistical quantities namely
the spherically averaged three dimensional (3D) power spec-
trum and the multi-frequency angular power spectrum
(MAPS) which are discussed in the two subsequent sub-
sections.

3.1 The power spectrum

Several authors (see Section 1) have used the 3D power spec-
trum P (k) to quantify the simulated EoR 21-cm signal in the
presence of the LC effect. The first step here is to map the
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in the coeval simulations are, by construction, statistically
homogeneous along the LoS direction ν. The cosmological
evolution seen in the LC simulation, however, breaks the
statistical homogeneity along the LoS direction ν. The fluc-
tuations δTb(θ, ν) continue to be statistically homogeneous
along θ in both the coeval and LC simulations.

3 STATISTICAL ANALYSIS

The issue here is “How to quantify the statistics of
δTb(θ, ν)?”. We consider two statistical quantities namely
the spherically averaged three dimensional (3D) power spec-
trum and the multi-frequency angular power spectrum
(MAPS) which are discussed in the two subsequent sub-
sections.

3.1 The power spectrum

Several authors (see Section 1) have used the 3D power spec-
trum P (k) to quantify the simulated EoR 21-cm signal in the
presence of the LC effect. The first step here is to map the
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The light-cone EoR 21-cm signal 5
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EoR 21-cm brightness temperature fluctuations to spatial
comoving coordinates δTb(θ, ν) → δTb(x, y, z) within the
simulation volume V . The fact that r varies with ν along
the LoS and the two have a non-linear relation results in
a spatial grid of non-uniform spacing which poses a prob-
lem for evaluating the Fourier transform needed to compute
P (k). We have avoided this complication by using

(x, y, z) = (rc θx, rc θy, zc + r′c (ν − νc) ) (9)

where rc and r′c = d r
d ν

˛

˛

rc
are both evaluated at the cen-

tral redshift of 8. This approximation results in a rectan-
gular spatial grid of uniform spacing where we directly use
FFT to estimate T̃b(k) which is the 3D Fourier transform of
δTb(x, y, z). This approximation introduces an error which
is less than ∼ 1.5% in grid positions.

The 3D H i 21-cm power spectrum can be calculated
using

P (k) = V −1˙

T̃b(k) T̃b(−k)
¸

. (10)

Fig. 5 shows the dimensionless spherically averaged H i 21-
cm power spectra ∆2

b(k) = k3P (k)/2π2 as a function of k
for the LC and coeval simulations, both centred at redshift
8. We see that the LC effect introduces a very significant en-
hancement at large scales and the two power spectra differ
by factor of ∼ 4 at k ∼ 0.1 Mpc−1. Although the simula-
tion methodology and the parameters used here are quite
different, this result is consistent and qualitatively similar
to those obtained earlier (Datta et al. 2012; La Plante et al.
2014; Datta et al. 2014).

It is important to note that the EoR 21-cm signal
δTb(θ, ν) evolves significantly along the LoS direction ν due
to the LC effect (Fig. 4). While the 3D Fourier modes and
3D power spectrum P (k) are optimal if the signal is statisti-
cally homogeneous, the 3D Fourier modes which are used to
calculate P (k) are not the optimal basis set when the sta-
tistical properties of the signal evolve within the simulation
volume. Additionally, the Fourier transform imposes period-
icity on the signal, an assumption that cannot be justified

along the LoS once the LC effect is included. These effects
imply that the 3D power spectrum fails to fully quantify the
entire signal. These effects can also introduce artefacts in
the 3D power spectrum estimation (Trott 2016).

3.2 The multi-frequency angular power spectrum

Here we decompose the brightness temperature fluctuations
δTb(n̂, ν) in terms of spherical harmonics Y m

ℓ (n̂) using

δTb(n̂, ν) =
X

ℓ,m

aℓm(ν) Y m
ℓ (n̂) (11)

and define the multi-frequency angular power spectrum
(hereafter MAPS, Datta et al. 2007) as

Cℓ(ν1, ν2) =
˙

aℓm(ν1) a∗
ℓm(ν2)

¸

. (12)

This incorporates the assumption that the EoR 21-cm sig-
nal is statistically homogeneous and isotropic with respect
to different directions in the sky, however the signal is not as-
sumed to be statistically homogeneous along the LoS direc-
tion ν. We expect Cℓ(ν1, ν2) to entirely quantify the second
order statistics of the EoR 21-cm signal.

In the present work it suffices to adopt the flat sky
approximation where we decompose the θ dependence of
δTb(θ, ν) into 2D Fourier modes T̃b2(U , ν). Here U is the
Fourier conjugate of θ, and we define the MAPS using

Cℓ(ν1, ν2) = C2πU(ν1, ν2) = Ω−1 ˙

T̃b2(U , ν1) T̃b2(−U , ν2)
¸

(13)

where Ω is the solid angle subtended by the simulation at
the observer.

The ℓ range ℓmin = 2π/θmax = 195 to ℓmax =
2π/θmin = 52178 corresponding to our LC simulation was
divided in 10 equally spaced logarithmic bins, and we
have computed the average Cℓ(ν1, ν2) for each of these bins.
Fig. 6 shows Cℓ(ν1, ν2) estimated from our LC simulation
at ℓ = 1468, 4486, 13728 and 42018. We see that the sig-
nal peaks along the diagonal elements ν1 = ν2 of Cℓ(ν1, ν2).
Cℓ(ν1, ν2) falls rapidly away from the diagonal i.e. as the
frequency separation ∆ν = | ν1 − ν2 | is increased, and it
falls by atleast an order of magnitude beyond ∆ν = 0.5 MHz
for ℓ = 4486. It oscillates close to zero with both positive
and negative Cℓ values for even larger ∆ν. The behaviour
is similar for the other multipoles, however the magnitude
of Cℓ falls as ℓ is increased. The value of Cℓ(ν1, ν2) also falls
off more rapidly away from the diagonal as the value of ℓ is
increased. We do not discuss these features in any further
detail here, and plan to present this in future work.

We now consider the relation between P (k) and
Cℓ(ν1, ν2). As mentioned earlier, P (k) assumes that the sig-
nal is ergodic (E) and periodic (P) along the LoS direction.
We define CEP

ℓ (ν1, ν2) which is the ergodic and periodic com-
ponent of Cℓ(ν1, ν2). We estimate CEP

ℓ (ν1, ν2) from the mea-
sured Cℓ(ν1, ν2) by imposing the conditions CEP

ℓ (ν1, ν2) =
CEP

ℓ (∆ν) (ergodic) and CEP
ℓ (∆ν) = CEP

ℓ (B −∆ν) (periodic)
where B is the frequency bandwidth of the simulation. In
the flat sky approximation, P (k) is the Fourier transform of
CEP

ℓ (∆ν), and we have (Datta et al. 2007)

P (k⊥, k∥) = r2
c r′c

Z

d(∆ν) e−ik∥r′
c
∆ν CEP

ℓ (∆ν) (14)

MNRAS 000, 1–8 (2016)

Reverse mapping of  EoR 21-cm brightness temperature fluctuations to spatial 
comoving coordinates δTb(θx,θy, ν) → δTb(x, y, z)$
!
                                   (x, y, z) = [rc θx, rcθy, zc + rc′ (ν − νc) ]  

Mondal, Bharadwaj, Datta, 2017 Datta, Jensen, Mellema et al 2014

Effects on EoR 3D power spectrum

9

The LC effect is stronger at large scales.
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Figure 4.6: Same as Figure 4.5, but for the model C where both Ly– coupling
and heating are calculated self-consistently.
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Effects on Cosmic dawn 21-cm power spectrum

Ghara, Datta, Choudhury, 2015

10

• The LC effect becomes when power spectrum takes a turn.  
• Peaks and dips are smoothed out due to the LC effect



But 
!

Can the 3D power spectrum describe light-cone 21-cm signal completely? 

11

Mondal, Bharadwaj, Datta, 2017



Light Cone effect breaks the statistical homogeneity $
!

and $
!

makes the signal non-ergodic $
!

along the LoS. !

12



13

In addition !
!
!

Light Cone effect breaks periodicity of the signal along LOS



14

Information theory$
!
!
!

• The Fourier modes form orthogonal Eigen basis only for a statistically homogeneous or 
ergodic signal!

!
• The second order statistics is completely quantified by the 3D power spectrum P(k). !
!
• 3D P(k) assumes that the signal is ergodic (E) and periodic (P) along the LoS direction. 

Both are not valid for Light cone 21-cm signal!
!
• For light cone signal which is non-ergodic, different Fourier modes along the LoS is 

correlated and P(k) does not retain the entire information of the 21-cm signal. 



The multi-frequency angular power spectrum (MAPS)

The light-cone EoR 21-cm signal 5
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EoR 21-cm brightness temperature fluctuations to spatial
comoving coordinates δTb(θ, ν) → δTb(x, y, z) within the
simulation volume V . The fact that r varies with ν along
the LoS and the two have a non-linear relation results in
a spatial grid of non-uniform spacing which poses a prob-
lem for evaluating the Fourier transform needed to compute
P (k). We have avoided this complication by using

(x, y, z) = (rc θx, rc θy, zc + r′c (ν − νc) ) (9)

where rc and r′c = d r
d ν

˛

˛

rc
are both evaluated at the cen-

tral redshift of 8. This approximation results in a rectan-
gular spatial grid of uniform spacing where we directly use
FFT to estimate T̃b(k) which is the 3D Fourier transform of
δTb(x, y, z). This approximation introduces an error which
is less than ∼ 1.5% in grid positions.

The 3D H i 21-cm power spectrum can be calculated
using

P (k) = V −1˙

T̃b(k) T̃b(−k)
¸

. (10)

Fig. 5 shows the dimensionless spherically averaged H i 21-
cm power spectra ∆2

b(k) = k3P (k)/2π2 as a function of k
for the LC and coeval simulations, both centred at redshift
8. We see that the LC effect introduces a very significant en-
hancement at large scales and the two power spectra differ
by factor of ∼ 4 at k ∼ 0.1 Mpc−1. Although the simula-
tion methodology and the parameters used here are quite
different, this result is consistent and qualitatively similar
to those obtained earlier (Datta et al. 2012; La Plante et al.
2014; Datta et al. 2014).

It is important to note that the EoR 21-cm signal
δTb(θ, ν) evolves significantly along the LoS direction ν due
to the LC effect (Fig. 4). While the 3D Fourier modes and
3D power spectrum P (k) are optimal if the signal is statisti-
cally homogeneous, the 3D Fourier modes which are used to
calculate P (k) are not the optimal basis set when the sta-
tistical properties of the signal evolve within the simulation
volume. Additionally, the Fourier transform imposes period-
icity on the signal, an assumption that cannot be justified

along the LoS once the LC effect is included. These effects
imply that the 3D power spectrum fails to fully quantify the
entire signal. These effects can also introduce artefacts in
the 3D power spectrum estimation (Trott 2016).

3.2 The multi-frequency angular power spectrum

Here we decompose the brightness temperature fluctuations
δTb(n̂, ν) in terms of spherical harmonics Y m

ℓ (n̂) using

δTb(n̂, ν) =
X

ℓ,m

aℓm(ν) Y m
ℓ (n̂) (11)

and define the multi-frequency angular power spectrum
(hereafter MAPS, Datta et al. 2007) as

Cℓ(ν1, ν2) =
˙

aℓm(ν1) a∗
ℓm(ν2)

¸

. (12)

This incorporates the assumption that the EoR 21-cm sig-
nal is statistically homogeneous and isotropic with respect
to different directions in the sky, however the signal is not as-
sumed to be statistically homogeneous along the LoS direc-
tion ν. We expect Cℓ(ν1, ν2) to entirely quantify the second
order statistics of the EoR 21-cm signal.

In the present work it suffices to adopt the flat sky
approximation where we decompose the θ dependence of
δTb(θ, ν) into 2D Fourier modes T̃b2(U , ν). Here U is the
Fourier conjugate of θ, and we define the MAPS using

Cℓ(ν1, ν2) = C2πU(ν1, ν2) = Ω−1 ˙

T̃b2(U , ν1) T̃b2(−U , ν2)
¸

(13)

where Ω is the solid angle subtended by the simulation at
the observer.

The ℓ range ℓmin = 2π/θmax = 195 to ℓmax =
2π/θmin = 52178 corresponding to our LC simulation was
divided in 10 equally spaced logarithmic bins, and we
have computed the average Cℓ(ν1, ν2) for each of these bins.
Fig. 6 shows Cℓ(ν1, ν2) estimated from our LC simulation
at ℓ = 1468, 4486, 13728 and 42018. We see that the sig-
nal peaks along the diagonal elements ν1 = ν2 of Cℓ(ν1, ν2).
Cℓ(ν1, ν2) falls rapidly away from the diagonal i.e. as the
frequency separation ∆ν = | ν1 − ν2 | is increased, and it
falls by atleast an order of magnitude beyond ∆ν = 0.5 MHz
for ℓ = 4486. It oscillates close to zero with both positive
and negative Cℓ values for even larger ∆ν. The behaviour
is similar for the other multipoles, however the magnitude
of Cℓ falls as ℓ is increased. The value of Cℓ(ν1, ν2) also falls
off more rapidly away from the diagonal as the value of ℓ is
increased. We do not discuss these features in any further
detail here, and plan to present this in future work.

We now consider the relation between P (k) and
Cℓ(ν1, ν2). As mentioned earlier, P (k) assumes that the sig-
nal is ergodic (E) and periodic (P) along the LoS direction.
We define CEP

ℓ (ν1, ν2) which is the ergodic and periodic com-
ponent of Cℓ(ν1, ν2). We estimate CEP

ℓ (ν1, ν2) from the mea-
sured Cℓ(ν1, ν2) by imposing the conditions CEP

ℓ (ν1, ν2) =
CEP

ℓ (∆ν) (ergodic) and CEP
ℓ (∆ν) = CEP

ℓ (B −∆ν) (periodic)
where B is the frequency bandwidth of the simulation. In
the flat sky approximation, P (k) is the Fourier transform of
CEP

ℓ (∆ν), and we have (Datta et al. 2007)

P (k⊥, k∥) = r2
c r′c

Z

d(∆ν) e−ik∥r′
c
∆ν CEP

ℓ (∆ν) (14)

MNRAS 000, 1–8 (2016)

By imposing the conditions (i)!
                                                  !
                                           (ii)

In the flat-sky approximation

is the 2D  Fourier transform of 

We show
15

Datta, Choudhury, Bharadwaj, 2007
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EoR 21-cm brightness temperature fluctuations to spatial
comoving coordinates δTb(θ, ν) → δTb(x, y, z) within the
simulation volume V . The fact that r varies with ν along
the LoS and the two have a non-linear relation results in
a spatial grid of non-uniform spacing which poses a prob-
lem for evaluating the Fourier transform needed to compute
P (k). We have avoided this complication by using

(x, y, z) = (rc θx, rc θy, zc + r′c (ν − νc) ) (9)

where rc and r′c = d r
d ν

˛

˛

rc
are both evaluated at the cen-

tral redshift of 8. This approximation results in a rectan-
gular spatial grid of uniform spacing where we directly use
FFT to estimate T̃b(k) which is the 3D Fourier transform of
δTb(x, y, z). This approximation introduces an error which
is less than ∼ 1.5% in grid positions.

The 3D H i 21-cm power spectrum can be calculated
using

P (k) = V −1˙

T̃b(k) T̃b(−k)
¸

. (10)

Fig. 5 shows the dimensionless spherically averaged H i 21-
cm power spectra ∆2

b(k) = k3P (k)/2π2 as a function of k
for the LC and coeval simulations, both centred at redshift
8. We see that the LC effect introduces a very significant en-
hancement at large scales and the two power spectra differ
by factor of ∼ 4 at k ∼ 0.1 Mpc−1. Although the simula-
tion methodology and the parameters used here are quite
different, this result is consistent and qualitatively similar
to those obtained earlier (Datta et al. 2012; La Plante et al.
2014; Datta et al. 2014).

It is important to note that the EoR 21-cm signal
δTb(θ, ν) evolves significantly along the LoS direction ν due
to the LC effect (Fig. 4). While the 3D Fourier modes and
3D power spectrum P (k) are optimal if the signal is statisti-
cally homogeneous, the 3D Fourier modes which are used to
calculate P (k) are not the optimal basis set when the sta-
tistical properties of the signal evolve within the simulation
volume. Additionally, the Fourier transform imposes period-
icity on the signal, an assumption that cannot be justified

along the LoS once the LC effect is included. These effects
imply that the 3D power spectrum fails to fully quantify the
entire signal. These effects can also introduce artefacts in
the 3D power spectrum estimation (Trott 2016).

3.2 The multi-frequency angular power spectrum

Here we decompose the brightness temperature fluctuations
δTb(n̂, ν) in terms of spherical harmonics Y m

ℓ (n̂) using

δTb(n̂, ν) =
X

ℓ,m

aℓm(ν) Y m
ℓ (n̂) (11)

and define the multi-frequency angular power spectrum
(hereafter MAPS, Datta et al. 2007) as

Cℓ(ν1, ν2) =
˙

aℓm(ν1) a∗
ℓm(ν2)

¸

. (12)

This incorporates the assumption that the EoR 21-cm sig-
nal is statistically homogeneous and isotropic with respect
to different directions in the sky, however the signal is not as-
sumed to be statistically homogeneous along the LoS direc-
tion ν. We expect Cℓ(ν1, ν2) to entirely quantify the second
order statistics of the EoR 21-cm signal.

In the present work it suffices to adopt the flat sky
approximation where we decompose the θ dependence of
δTb(θ, ν) into 2D Fourier modes T̃b2(U , ν). Here U is the
Fourier conjugate of θ, and we define the MAPS using

Cℓ(ν1, ν2) = C2πU(ν1, ν2) = Ω−1 ˙

T̃b2(U , ν1) T̃b2(−U , ν2)
¸

(13)

where Ω is the solid angle subtended by the simulation at
the observer.

The ℓ range ℓmin = 2π/θmax = 195 to ℓmax =
2π/θmin = 52178 corresponding to our LC simulation was
divided in 10 equally spaced logarithmic bins, and we
have computed the average Cℓ(ν1, ν2) for each of these bins.
Fig. 6 shows Cℓ(ν1, ν2) estimated from our LC simulation
at ℓ = 1468, 4486, 13728 and 42018. We see that the sig-
nal peaks along the diagonal elements ν1 = ν2 of Cℓ(ν1, ν2).
Cℓ(ν1, ν2) falls rapidly away from the diagonal i.e. as the
frequency separation ∆ν = | ν1 − ν2 | is increased, and it
falls by atleast an order of magnitude beyond ∆ν = 0.5 MHz
for ℓ = 4486. It oscillates close to zero with both positive
and negative Cℓ values for even larger ∆ν. The behaviour
is similar for the other multipoles, however the magnitude
of Cℓ falls as ℓ is increased. The value of Cℓ(ν1, ν2) also falls
off more rapidly away from the diagonal as the value of ℓ is
increased. We do not discuss these features in any further
detail here, and plan to present this in future work.

We now consider the relation between P (k) and
Cℓ(ν1, ν2). As mentioned earlier, P (k) assumes that the sig-
nal is ergodic (E) and periodic (P) along the LoS direction.
We define CEP

ℓ (ν1, ν2) which is the ergodic and periodic com-
ponent of Cℓ(ν1, ν2). We estimate CEP

ℓ (ν1, ν2) from the mea-
sured Cℓ(ν1, ν2) by imposing the conditions CEP

ℓ (ν1, ν2) =
CEP

ℓ (∆ν) (ergodic) and CEP
ℓ (∆ν) = CEP

ℓ (B −∆ν) (periodic)
where B is the frequency bandwidth of the simulation. In
the flat sky approximation, P (k) is the Fourier transform of
CEP

ℓ (∆ν), and we have (Datta et al. 2007)

P (k⊥, k∥) = r2
c r′c

Z

d(∆ν) e−ik∥r′
c
∆ν CEP

ℓ (∆ν) (14)

MNRAS 000, 1–8 (2016)

If ergodicity and periodicity are imposed, 3D power spectrum is exactly recovered from 
MAPS. 

This implies that MAPS contains much more information than P(k) and a better statistics 
to quantify light cone EoR 21-cm signal.
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Results -MAPS 

From Light cone and coeval simulations

6 Mondal, Bharadwaj & Datta
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Figure 6. This shows the multi-frequency angular power spectrum ℓ(ℓ + 1) Cℓ(ν1, ν2)/(2π) at ℓ = 1468, 4486, 13728 and 42018 (left to
right panels) for the LC simulation.
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where k∥ and k⊥ = ℓ/rc are the components of k respectively
parallel and perpendicular to the LoS. A brief derivation of
eq. (14) is presented in the Appendix. Figure 7 shows
CEP

ℓ (∆ν) estimated from our LC simulation. We see
that the signal decorrelates rapidly as ∆ν increases,
and the decorrelation is more rapid at larger ℓ values
consistent with the behavious seen in Figure 6. Here
we have estimated CEP

ℓ (∆ν) from our LC simulation,
and used and used this in eq. (14) to calculate P (k).
Figure. A1 presents a comparison of P (k) calculated
using eq. (14) with that obtained directly from the
3D Fourier transform (Fig. 5), we find that the two
agree to an accuracy better than 1%.

The MAPS Cℓ(ν1, ν2) quantifies the entire second or-
der statistics of the EoR 21-cm signal even in the presence
of the LC effect. In comparison to this, the 3D power spec-
trum P (k) only quantifies a part of this information, namely
the part contained in CEP

ℓ (∆ν). The difference δCℓ(ν1, ν2) =
Cℓ(ν1, ν2)−CEP

ℓ (ν1, ν2) provides an estimate of the informa-
tion that is missed out by the 3D power spectrum P (k). Here
we focus on the diagonal elements ν1 = ν2 where the MAPS
signal peaks (Figure 6). Fig. 8 shows how the diagonal
element Cℓ(ν, ν) varies with ν. We see that Cℓ(ν, ν) in-
creases with decreasing ν which corresponds to in-
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Figure 8. This shows Cℓ(ν, ν) as a function of ν for the LC sim-
ulation at the four different ℓ bins considered in Figure 6. The
values of CEP

ℓ (ν, ν) (horizontal straight line) have been shown for
comparison.

creasing neutral fraction along the LoS direction.
For comparison we also show CEP

ℓ (ν, ν) which does
not vary with ν. Fig. 9 shows how δCℓ/C

EP
ℓ varies with ν

for different values of ℓ, note that the denominator here does
not vary with ν1 for the diagonal terms. For comparison we
also show the results for the coeval simulation centered at
redshift 8. The coeval simulation is ergodic and has periodic
boundary conditions along the LoS, and we expect P (k) to
work perfectly well in this case. We see that δCℓ/Cℓ esti-
mated from the coeval simulations exhibits random fluctu-
ations around zero, and is roughly consistent with zero. We
interpret these random fluctuations as arising due to cos-
mic variance. The magnitude of these fluctuation become
smaller as we go to larger ℓ. We can explain this by not-
ing that the number of independent ℓ modes in each bin
increases with ℓ for the logarithmic binning adopted here.
In contrast to the coeval simulation, we find that δCℓ/C

EP
ℓ

shows a systematic variation with νi in the LC simulation.
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Results -MAPS 

From Light cone simulations

Assuming periodicity $
and ergodicity
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l=1468 l=4486 l=13728 l=42018



Results -MAPS 

From Light cone and coeval simulations
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Summary 
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• The light cone effect is found to be an important effect and should be considered in 
the statistical analysis of EoR 21-cm signal. 
!

• It is important that the LC effect should be implemented before correcting for the 
peculiar velocity effect. 
!

• The LC effect makes the signal non-ergodic and non-periodic along the los.  
!

• 3D power spectrum or spherically averaged power spectrum of HI 21-cm signal can 
not retain full information of the light cone EoR/CD signal. 
!

• Multi-frequency angular power spectrum (MAPS) retains the entire information of the 
second order statistics of the signal and therefore a better statistical estimator of the 
signal. The 3D power spectrum can be recovered from the MAPS assuming the 
signal to be ergodic and periodic along the los. 

Thank you 


