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Basis of this talk



The Challenge of the EoR

EG Compact Sources

Galaxy

Radiometric Noise

Complex astrophysics makes signal 
difficult to model

Systematic noise drowns signal (~4 
orders of magnitude)



The 2D Power Spectrum and Foreground 
Suppression

~ 
1/
ν

~ BaselinesLiu et al. 2014

Most experiments try to detect the 1D PS.

2D PS useful diagnostic – separates frequency- and 
baseline-dependent effects.

Foreground removal attempts to remove foregrounds and 
see inside the wedge.

Foreground avoidance ignores modes in the wedge. 

Foreground suppression optimally down-weights noisy 
modes to use all data, given a model covariance from 
residual foregrounds.
(Liu+Tegmark 2011, Liu+2014a,b)



A Framework for Statistical Point-Source 
Foregrounds (CHIPS)
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Covariance between visibilities on 
the same baseline at different 
frequencies.

Beam Attenuation

𝐵(𝑙,𝑚) Covariance of 2D 
power spectrum

Statistical Model Components



Current Simple Component Models
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A Revised Model
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Model Features I: Test vs Simulation

Analytic solution agrees
with simulation

Clustering dominates on 
large scales

Poisson noise dominates on 
small scales

Transition point



Model Features I: Testing Spectral Index 
Distribution

Normal Dist. of Spec. Index does 
not change results

Callingham+2017



Model Features II: Source-Counts

The scale above which clustering dominates is 
important:

Clustering more important if:
v Fainter sources exist
v More sources peeled (SKA!)
v Fainter sources more abundant

Very large-scale-heavy source distribution may 
push clustering into unobserved scales.

Current knowledge of the faint source population lets u� range 
from 13 to 5000 – from unobservable to dominant over the 
entire range.



Model Features III: Power-Spectrum 
Covariance

Baselines (u)

FT(ν)

Extra noise in window



A Signal-to-
Noise 
Estimate
Fiducial Model:

κ: 1.5  | u0: 0.5
Smax: 30/1 mJy (MWA/SKA)
Smin: 0.1 mJy | β1: 1.95

Caveats!
1. Spectral/Spatial limits from 

simulation, not instrument.
2. Only point-source foregrounds

present.



Bias from 
Ignorance
Fiducial Model:

κ: 1.5  | u0: 0.5
Smax: 30/1 mJy (MWA/SKA)
Smin: 0.1 mJy | β1: 1.95

Caveats!
1. Same caveats apply
2. Highly uncertain κ
3. Observations more biased by large 

LOS scales.



Limitations and Assumptions

u True only for delay-spectrum (covariance for single baseline).

u Does not yield covariance between u bins.

u Assumes all residual compact sources are point sources.

u Assumes flat-sky approximation.

u Power spectrum model not physically motivated – investigate HOD/CLF models 
to jointly specify source counts and clustering.

u Final results ignore galactic foregrounds, which outshine point sources on largest 
scales.



Summary and Conclusions

v Biggest challenge for EoR detection is systematic foregrounds 
(more time + bigger telescope doesn’t help!)

v A promising approach is to use inverse covariance weighting to 
suppress foreground contamination.
v Requires realistic model of foreground covariances.

v We derived a new foreground covariance model using realistic 
source count and spatial distributions.
v Realism could be enhanced by next-generation surveys on SKA1.

v Our model predicts:
v Extra covariance on largest scales. 

v This effect grows (relatively) stronger for deeper surveys (i.e. SKA!)

v SKA1 (and SKA2) will require high-fidelity models of source 
clustering to accurately predict large-scale EoR PS.


